D.Sc. Grzegorz Kudra - CV

prac GKudra

Grzegorz Kudra was born in 1974 in Lodz. He received M.Sc., Ph.D. and D.Sc. degrees in Applied Mechanics from Lodz University of Technology in 1999, 2002 and 2013, respectively. Since 1999 he is employed in Department of Automation, Biomechanics and Mechatronics (1999-2002 as assistant, 2003-2018 as assistant professor, since 2018 as associate professor).

Publications in journals from JCR list:

[1] Witkowski, K., Kudra G., Wasilewski, G., Awrejcewicz, J.: Modelling and experimental validation of one-degree-of-freedom impacting oscillator. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2018, accepted (IF = 0.988).
[2] Awrejcewicz, J., Kudra, G.: Rolling resistance modelling in the Celtic stone dynamics. Multibody System Dynamics, 2018, https://doi.org/10.1007/s11044-018-9624-9 (IF = 2.718).
[3] Kudra, G, Awrejcewicz, J., Szewc, M.: Modeling and simulation of the clutch dynamics using approximations of the resulting contact forces. Applied Mathematical Modelling, 46, 2017, 707-715 (IF = 2.617).
[4] Kudra, G, Awrejcewicz, J.: Application of a special class of smooth models of the resultant friction force and moment occurring on a circular contact area. Archive of Applied Mechanics, 87(5), 2017, 817-828 (IF = 1.467).
[5] Kudra, G, Szewc, M., Wojtunik, I., Awrejcewicz, J.: On some approximations of the resultant contact forces and their application in rigid body dynamics. Mechanical Systems and Signal Processing, 79, 2016, 182-191 (IF = 4.116).
[6] Kudra, G, Szewc, M., Wojtunik, I., Awrejcewicz, J.: Shaping the trajectory of the billiard ball with approximations of the resultant contact forces. Mechatronics, 37, 2016, 54-62 (IF = 2.496).
[7] Kudra, G, Awrejcewicz, J.: A smooth model of the resultant friction force on a plane contact area. Journal of Theoretical and Applied Mechanics, 54(3), 2016, 909-919 (IF = 0.683).
[8] Kaźmierczak, M., Kudra, G, Awrejcewicz, J., Wasilewski, G.: Mathematical modelling, numerical simulations and experimental verification of bifurcation dynamics of a pendulum driven by a dc motor. European Journal of Physics, 36, 2015, 13 pages (IF = 0.608).
[9] Kudra, G, Awrejcewicz, J.: Application and experimental validation of new computational models of friction forces and rolling resistance. Acta Mechanica, 226, 2015, 2831-2848 (IF = 1.694).
[10] Nigmatullin, R. R., Osokin, S. I., Awrejcewicz, J., Wasilewski, G., Kudra, G.: The fluctuation spectroscopy based on the scaling properties of beta-distribution: Analysis of triple pendulum data. Mechanical Systems and Signal Processing, 52-53, 2015, 278-292 (IF = 2.771).
[11] Nigmatullin, R. R., Osokin, S. I., Awrejcewicz, J., Kudra, G.: Application of the generalized Prony spectrum for extraction of information hidden in chaotic trajectories of triple pendulum. Central European Journal of Physics, 12(8), 2014, 565-577 (IF = 1.085).
[12] Kudra, G, Awrejcewicz, J.: Approximate modelling of resulting dry friction forces and rolling resistance for elliptic contact shape. European Journal of Mechanics A/Solids, 42, 2013, 358-375 (IF = 1.904).
[13] Awrejcewicz, J., Wasilewski, G., Kudra, G., Reshmin, S.A.: An experiment with swinging up a double pendulum using feedback control. Journal of Computer and Systems Sciences International, 51(2), 2012, 176-182 (IF = 0.249).
[14] Awrejcewicz, J., Kudra, G.: Celtic stone dynamics revisited using dry friction and rolling resistance. Shock and Vibration 19, 2012, 1-9 (IF = 0.535).
[15] Kudra, G., Awrejcewicz, J.: Tangens hyperbolicus approximations of the spatial model of friction coupled with rolling resistance. International Journal of Bifurcation and Chaos, 21(10), 2011, 2905-2917 (IF = 0.755).
[16] Awrejcewicz, J., Supeł, B., Lamarque, C.-H., Kudra, G., Wasilewski, G., Olejnik, P.: Numerical and experimental study of regular and chaotic motion of triple physical pendulum. International Journal of Bifurcation and Chaos, 18(10), 2008, 2883-2915 (IF = 0.870).
[17] Awrejcewicz, J., Kudra, G., Wasilewski, G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dynamics, 50(4), 2007, 755-766 (IF = 1.045).
[18] Awrejcewicz, J., Kudra, G.: The piston-connecting rod-crankshaft system as a triple physical pendulum with impacts. International Journal of Bifurcation and Chaos 15(7), 2005, 2207-2226 (IF = 0.845).
[19] Awrejcewicz, J., Kudra, G.: Stability analysis and Lyapunov exponents of a multi-body mechanical system with rigid unilateral constraints, Nonlinear Analysis – Theory, Methods and Applications 63(5-7), 2005, 909-918 (IF2005 = 0.519).
[20] Awrejcewicz, J., Kudra, G.: Modeling, numerical analysis and application of triple physical pendulum with rigid limiters of motion, Archive of Applied Mechanics 74(11-12), 2005, 746-753 (IF2005 = 0.500)
[21] Awrejcewicz, J., Kudra, G., Lamarque, C.-H.: Investigation of triple pendulum with impacts using fundamental solution matrices, International Journal of Bifurcation and Chaos 14(12), 2004, 4191-4213 (IF = 1.019).
[22] Awrejcewicz, J., Kudra, G., Lamarque, C.-H.: Dynamics investigation of three coupled rods with a horizontal barrier. Meccanica, 38(6), 2003, 687-698 (IF= 0.237).